1. Complexes

1.1. We consider sets endowed with an order relation denoted by C
and read "is a face of" or "is contained in" . Such a set is called a complex if the
ordered subset of all faces of any given element is isomorphic with the ordered set
of all subsets of a set, and if any two elements A,B have a greatest lower bound,
denoted by A N B . A complex has a smallest element which we shall always denote by
0 . The number of minimal non O faces of an element A is called the rank of A ,
and denoted by rk A . The elements of rank 1 are called vertices. Since an element of
a complex is completely characterized by the set of its vertices, we may also define
a complex as a set A of subsets of a set V (the set of vertices), such that
{x}¢e A for all xe¢ V , and that BC A e¢ A implies B e A ; the rank of an element

of A is its cardinality (as a subset of V ) . The rank of a complex A , denoted

by rk A, is by definition sup {rk A | A e A} . A complex is called a simplex if
it is isomorphic to the set of all subsets of a given set, ordered by inclusion.

Hereafter, A always denotes a complex.

We define a morphism « : A -4 of A into another complex A' as
a mepping of the underlying sets such that, for every A ¢ A , the restriction of
a to the simplex of all faces of A 1is an isomorphism of ordered sets onto the
simplex of all faces of «(A) . (About lster use of the word 'morphism’ in these notes,

see also the general convention at the end of n° 1.3)

A subcomplex of A 1is by definition a complex A whose underlying set
is a subset of A , and such that the inclusion is a morphism (this means that the
order relation of A' is induced by that of A , and that if A ¢ A', all faces of

A in A belong to A )

If Ae A, the set of all elements of A which contain A , together

with the order relation induced by that of A , is a complex, called the star of A



(in A ) and denocted by St A .(Notice the slight deviation from the terminology
cormmonly used in topology, where St A is often called the link of A in A .) If
Be St A, the rank of B in St A is called the codimension of A in B , and

denoted by codimB A .

If two elements A, B ¢ A have an upper bound, they are called incident
(another deviation from the standard terminology!); in that case, they have a least
upper bound, denoted by AU B .

A sequence AO, A Am of elements of a complex is called a chain
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if, for every 1 =0, 1, ..., m-1 , one of the two relations A CAi+l or Ai+1 C Ay

holds.

If A and A' are two complexes, the direct product of their underlying

sets, ordered by

{(A,A') c (B,B') iff ACA' and BCB ,

is a complex A * A' , called the join of the two complexes.

1.2. Let V bve a set endowed with a reflexive and symmetric relation,
called the incidence. The subsets of V whose points are pairwise incident, ordered
by inclusion, form a complex F{V) whose vertices are the sets reduced to one point.

A complex is celled a flag complex if it is isomorphic to such an F(V)

Let A, &' Ybe two complexes and let V , V! be their sets of vertices.
A morphism A - A" is completely characterized by its restriction to V . A necessary
condition for a mepping V - V' to be the restriction of a morphism A - A is that
it maps pairs of distinct incident vertices onto pairs of distinct incident vertices;

if A' is g flag complex, this condition is alsc sufficient.



1.2.1. PROPOSITION. A complex A is a flag complex if and only if every

set of pairwise incident elements of A has an upper bound. If A has finite rank,

it is a flag complex if and only if every triplet of pairwise incident elements has

an_upper bound.

The proof is immediate.

1.3. A complex A is called a chamber complex if every element is
contained in e maximal element and if, given two meximel elements C, C', there exists

a finite sequence

(1) C=Cy, Cy 5 res C =0
such that
(2) codimci_l(ci_l nce,) = codimci(ci_l ne;g) gl

for all i=1, ..., m . The maximal elements of A are then called chambers. From

now on, the letter A will always denote a chamber complex. The set of all chambers

contained in a subset L of a chamber complex is denoted by ChamA L , or simply by

Cham L when no confusion can arise.

An element A € A has the same codimension in all chambers containing it.

Indeed, let €, C' ¢ Cham A be such that ACCNC' , let (ci)i=o o Dbe as

) e

above, and let B = CO N C1 Neee N Cm N A . Then, it follows immediately from (2),

by induction on 1 , that coc'li_mC B = codi.mc B , so that codimC B = codimc, B,
i

and, in view of the fact that codimA B < » , we can write

COdlmC A= codlmc B - codl.mA B =

= codim

o B - codlmA B = codlmc, A



The common value of all cod:i.mC A, for Ce ChamA and C DA 1is called the

codimension of A (in A ) and denoted by codim A .

If C, C' e Cham A , all elements of a sequence (1) satisfying (2) are
chambers, as is immediately deduced from (2), by induction on i and using what we

have just said of the codimension. Such a sequence is called a gallery of length m

and extremities C, C' (or joining C and C' ). For A, A" ¢ & , the gallery (1)

is seid to be stretched from A to A’ (or between A and A' ) if ACC,

A' ¢ C' and if there is no gallery of strictly smaller length with the same properties;
the length m is then called the distance of A and A' , and denoted by dist AA' .
The gallery (1) is called minimal if it is stretched between its extremities, that is
if m = dist CC' . By definition, a gallery (1) stammers if there is an

ie {0, 1, ..., m-1} such that Ci+ = Ci ; in particular, a minimal gallery cannot

1
stammer. The diameter of A , denoted by diam A , is defined as the

sup {dist CC' 1 C, C' ¢ Cham A} . The fundamental property of chamber complexes, that
any two chambers can be joined by a gallery, will be referred to as the connectedness

property.
Two chambers C, C' are celled adjacent if dist CC' =1 , that is, if
codim (C N C') =1 . Thus a finite sequence of chambers is a gallery if and only

if any two consecutive elements of the sequence are identical or adjacent.

A chamber complex is called thick {resp. thin) if every element of co-

dimension 1 is contained in at least three (resp. exactly two) chambers.

A morphism of a chamber complex into another is called a morphism of chamber

complexes if it maps the chanbers ontc chambers. Such a morphism cbviously maps the
galleries onto galleries, and diminishes the distance of chambers. In these notes,

we shall deal almost exclusively with chamber complexes. Except when otherwise

specified, all morphisms which we shall consider will be morphisms of chamber complexes.




1.4, Let G be a group, let I be a set, for every ie I let G be

a subgroup of G , and for every subset i1CI set

In the set r = _l_l_ (}/Gi , we introduce the following order relation: for
CcI =

I

Ag M}i and Be (;/Gi , we set ACB iff iD>j and if A, viewed as a subset
of G (a coset of G; ) , contains the subset B in the set-theoretical sense; if all

Gi are different, this simply means that we provide TI' with the order relation which

is the opposite of the set-theoretical inclusion. Together with this relation, I 1is

a complex which will be denoted by g(G;(Gi)i c I) , and on which G operates by left
translations. The star of the element G.i (1) in g_(G;(Gi)) clearly is the

ic i) ; in particular, if I is a chamber complex, the number of

complex C( Gi;(Gi)_
chambers containing Gj_ is the index [G51 : GQ/] , and the complex is thin iff
[G[i} : ,G/] =2 forall ie¢ I.

It is an easy exercise to show that, for three subgroups X, Y, Z of a

group, the following three properties are equivalent

(1) XYy n (X.2) =%.(¥ynz) ;
(2) Eny.xnz)y=xn{xz) ;
(3) If three cosets xX, yY, zZ have pairwise a non-empty

intersection, then xX N yY N z2 o .

be as sbove. Then, if I is

1.4.1. PROPOSITION. Let I, G, (Gé)iC I

)) is a fleg complex iff any three subgroups Gi R G‘.1 s

subsets of I ) possess the equivalent properties (1), (2) and (3).

finite, the complex ¢(G;(G
(

In any case, g(G;(Gi)) is a chamber complex iff the subgroups G{i) (i e I) generate

[

w2
Hie
=

s d o

G



The first assertion follows from 1.2.1. The second is immediate.

1.5. In a chamber complex A , a set L of chambers is called convex
if every minimal gallery whose extremities belong to L has all its terms in L .
A chamber subcomplex A' of A (i.e. a subcomplex which is a chamber complex and
such that the inclusion is e chamber morphism) is called convex if Cham A is
convex. It is readily seen that if a chamber subcomplex is an intersection of convex
chamber subcomplexes, it is itself convex. An arbitrary subcomplex of A 1is called

convex if it is an intersection of convex chamber subcomplexes.

The full convex hull of a subset L of A 1s defined as the smallest

convex subcomplex A' containing L . The set Cham A' 1is then called the convex
hull of L . It is easily seen that the convex hull of a set of chambers is the

smallest convex set of chambers containing it.

1.6. PROPOSITION. Let A , &' be two chamber complexes such that every

element of codimension 1 is contained in at most two chambers, let ¢ and ¥ be

two (chamber) morphisms of A into A' , and let A, B ¢ Cham A . Assume that

is injective and that ¢ and ¢ coincide on the set of all faces of A .

@[ chem A
If ¢ eand ¥ do not coincide on the set of all faces of B , then dist (p(4) ,

¥(B)) < dist AB , is not injective. Assume further that A is thin.
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Then, A' is also thin, ¢ is surjective and ¢ I Chem A is distance preserving.

Suppose that ¢ and ¢ do not coincide on all faces of B , let
G= (A= Ags By wees A= B) be a minimal gallery, and let 1 be the smallest
integer such that ¢ and ¥ do not coincide on all faces of Ai . Then,
w(hg) Dw(Ay | NA) = oA | NA) . Therefore, w(A) =o(a; ;) or ofa;) . But
the second possibility would clearly imply that ¢ and ¢ coincide on all faces of

Ay (because they already coincide on all faces of AN A, ). Therefore,



\I/(Ai) = cp(Ai_l) = \y(Ai_l) , and the gallery (G) stammers, which proves the first

part of the proposition.

We now assume that A 1is thin and first show that

(1) Ir ¢' , D' ¢ Cham A' are adjacent, and if C' = ¢(C) with

_1 f
Ce Cham A, then ¢ (D) = (D} , where D is a chamber

adjacent to C .

Indeed, let E be the face of codimension 1 of C such that cp(E) =
=C'ND'" , and let D be the chamber containing E and different from C . Then
cp(D) contains C' N D' and is different from C' , because of the injectivity

of ¢ , so that o(D) =D’

From (1) and the connectedness of A' follows immediately that

o(Cham A) = Cham A' ; the surjectivity of ensues.
¢

Two chambers C, D ¢ Cham A are adjacent if and only if ¢(C) and
(D) are adjacent. The "only if" is clear; the "if" is consequence of (1), Now,
the fact that ¢ preserves the distance of chambers and the thinness of A  follows

readily.

1.7. COROLLARY. If an endomorphism of a thin chamber complex is

injective on the set of chambers and leaves invariant all faces of a given chamber,

it is the identity.

1.8. An endomorphism ¢ : A —~A of a thin chamber complex is called
a folding if it is idempotent and if every chamber C belonging to o(a) is the

image of exactly two chambers of A by ¢ . One of these two chambers is necessarily



C itself; we denote the other by (C) . If C is a chamber not belonging to o(a) ,

we set (C) =¢C

1.9, LEMMA. Let 9 : A—>A be a folding. Then, the images by ¢ of

two adjacent chambers are identical or adjacent.

Let C , D be the two chambers. We may assume that at least one of thenm,
say C , belongs to ¢(n) . Let A be the face of F(C) whose imege by ¢ is
CND, and let D' be the chamber which contains A and is different from E'p(C)
Then, ¢(D') conteins C N D , so that it coincides with C or D . If D' ¢ o(a) ,

we must have o(D') =D because D' ¥ g(C) , so that D'

i

o) . If D' e ola) ,

{f

then also A ¢ ¢(A) so that A=¢(A) =CND, and G(C) =D = g(D) .

1.10. PROPOSITION. Let ¢ : A—A be a folding.

(1) There exists a peir of adjacent chambers such that one of

them belongs to o(4) and the other not; if {C,C'} is such a pair, with C e ola) ,

then ofC') =C.

(ii) Both the set ¢ (Cham A ) and its complement in Cham A

are convex.

(4i1) If €, ¢' are as in (i) and if D is sny chamber,

dist C'D - dist CD =1 or -1 according as D belongs to o(a) or not.

(iv) If C, C¢' @are as in (i), then ¢ is the only folding

which maps C' onto C.




We first show that

(1) If C, ¢' are two adjacent chambers and if C ¢ ¢(A) and

¢ £ ola) , then o(C') =C and (C) =cC' .

Indeed, since C N C' ¢ 9p{a) , it is invariant by ¢ so that o(C') contains

cnec! and must coincide with C .

Let now G be any minimal gellery having elements both in ¢{a) and
in its complement. Such a gallery clearly possesses two consecutive elements ¢ , C'
such that one of them, say C , belongs to cp(A) while the other does not. This
already proves (i). From (1), it follows that o(C') =C end @(C) = C' , so that
the galleries o(G) and $(G) stammer ( (G) 1s a gallery in view of lemma 1.9);
consequently, the extremities of G cannot both belong to ¢(a) (resp. to C@(A) )
otherwise the stammering gallery o(G) (resp. o{G) ) would have the same extremities

as G , which is impossible. This establishes (ii).

Let C, C', D be as in (iii) and assume first that D e ¢(a) . Take
for G a minimel gallery joining D and C' . Then, the stammering gallery o(G)

joins D and C , and one has
dist DC ¢ dist DC' - 1 .

But the opposite inequality also holds, obviously, so that we have equality. If
D g/cp(A) , one proves in e similar way, taking now for G a gallery joining D

and C and using §(G) instead of o(G) , that dist DC' = dist DC - 1 .

There remains to prove (iv). Let ¢ be any folding such that y(C') =C
and let us denote by &(A) the smallest subcomplex of A containing the set
#(Cham A) ; this set being convex, by (ii), §{a) is a chember complex. From (iii)

it follows that v(Cham A) = o(Cham A) and that §(Cham A) = §(Cham &) . Applying
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the proposition 1.6 to the restrictions of p and ¥ to o(A) and the chamber C ,

we see that o | CP(A) = ICP(A) . Similarly o ! E)(A) = [EP(A) . Consequently,

P=V .

1.11. COROLLARY. Let ¢ : A—>A Dbe a folding and let C , C' be two

adjacent chembers such that ¢(C') = C . Assume that there exists a folding ¢' such

that o' (C) = C' . Then o(A) Ug'(A) =4 , the intersection o{a) N o' (a) does not

contain eny chamber, and ¢' 1is the only folding having these two properties. The

mappings o' and ¢ coincide on Cham A . There exists an involutory automorphism
Depplngs ¢ anc Lolhelge on

p : A->A which coincides with ¢ on ¢'(A) and with o' on o(a) .

The relations o(A) U o' (a) = A and Cham (o(a) N ¢'(a)) =@ are
immediate consequences of 1.10 (iii). If ¢" is any folding satisfying these two
relations, one has C' ¢ ¢"(AY , C & o"(a) , thus o"(C) =C' Dby 1.10 (1) , and

o" =¢' by 1.10 (iv).

If an element of A belongs to o(A) N o'(a) , it is invariant by both
o and @' ; from the relation o(a) U ¢'(A) = A, it then follows that the morphisms
o ICP(A) and ¢ I cp'(A) cen-be glued into an endomorphism o : A—-A . This
endomorphism is injective on Cham A , and its square leaves invariant each face of
C , therefore (1.7) pe is the identity and o 1is an automorphism. Finally, if
D ¢ Cham g(a) , one has olo' (D)) =o(p(D)} =D , so that ¢ (D) = §(D) , and the

same is clearly true for D ¢ Cham ¢'(a) .

1,12, When it exists, the folding ¢' of corollary 1.11 will be called
opposite to ¢ and denoted by § (which is consistent with the notation introduced

in 1.8). The automorphism p 1S then called the reflection associated with ¢ . Let
B e A have codimension 1 ; if there is a reflection p leaving B invariant, this

reflection is unique (because if B=CN C' , with C, C' ¢ Cham A , one has



11

o{C) =C' , and p must be the reflection associated with a folding mapping C

onto €' ), and is called the reflection with respect to B .

The image o(A) of a folding is called a root, or the root assoclated

with ¢ . The wall of a root ¢ , denoted by 8¢ , is by definition the subcomplex

of A consisting of all A ¢ A such that there exist adjacent chambers C e ¢
and C' ¢ ¢ with ACCNC' . Two roots ¢ , § are called opposite if they are
associated with opposite foldings; by 1.11, this means that o U & = A and

®N3dNChama=40 .

1.13, LEMMA, Let C , C' ©be two adjacent chambers of the thin

complex A, set A=CnN c' and let P be the set of all galleries G which

are stretched between A and a chamber of A . Let ¢ and o' Dbe two endomorphisms

of A leaving all faces of A invariant and such that ¢(C) = ¢(C') =C and

o' (¢') =¢'(C) =C’ . Then, if and o' map I in itself, they are opposite
linen, 1i ¢ and map

foldings.

Let G = (co, C,y vee) cm) e I and set C_ =D . We first show by

1’
induction on m = dist AD that

(1) 1f Co=¢ (resp. C') , all faces of D are invariant by ¢ and

® o0 (resp. by o and o' .0 );
(&) 1f ¢y =¢ (resp. C') , then o' (D) #D (resp. (D) D ) .

For m= 0 , both statements are obvious. Let m be > O . Without loss
of generality, we may assume that Cy = C.Set y=¢ or @ . @ . By the induction
hypothesis, ¢ leaves invariant all faces of Cm_1 . The chamber (D) contains
q,(cm_l N D) = €.y ND, so that v{(D) = C,.1 ©°r D, but the first possibility is

excluded by the assumption made on ¢ and ¢' . Therefore, (D) =D . Since v
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also leaves invarient all faces of Cm_1 N D , it leaves invariant all faces of D ,
and (1) is proved. Now suppose that ¢' (D) =D . Applying (1) to the gallery o'(G) ,

for which it is alreedy proved, we see that ¢'(C 1 N D) = C,, ND, from which

‘m=

follows that o' (C

¢' (D) #D .

m—l) = Cm_1 , which contradicts the induction hypothesis. Therefore,

Let now D be any chamber of A, and let G be an element of T
whose last term is D . Applying (1) to ¢(G) , we see that ¢ leaves invariant
all faces of (D) , so that @2(3) = ¢(B) for a1l B C D , and the morphism o

is idempotent.

From (1) and (2), it follows that for every chamber E , either
o(E) = 9o(¢'(E)) =E #9'(E) or ¢'(E) =¢' (9(E)) = E # o(E) . Now, let D e Cham ¢(4) ,
and let E ¢ (p_l(D) . Then, either E=g(E) =D , or E =¢'(p(E)) = ¢'(D) . In other
words, cp’l(D) ={D, ¢' (D)} . Since ¢'(D) # D , this shows that ¢ is a folding.

The seame holds for ¢' , and the lemma is proved.



