
i. Complexes 

I.i. We consider sets endowed with an order relation denoted by C 

and read "is a face of" or "is contained in" . Such a set is called a complex if the 

ordered subset of all faces of any given element is isomorphic with the ordered set 

of all subsets of a set, and if any two elements A,B have a greatest lower bound, 

denoted by A N B . A complex has a smallest element which we shall always denote by 

0 . The number of minimal non 0 faces of an element A is called the rank of A , 

and denoted by rk A . The elements of rank i are called vertices. Since an element of 

a complex is completely characterized by the set of its vertices, we may also define 

a complex as a set ~ of subsets of a set V (the set of vertices), such that 

(x}6 A for all x 6 V , and that B C A e A implies B e A ; the rank of an element 

of & is its cardinality (as a subset of V ) . The rank of a complex A , denoted 

by rk A , is by definition sup {rk A I A r AS �9 A complex is called a simplex if 

it is isomorphic to the set of all subsets of a given set, ordered by inclusion. 

Hereafter, ~ always denotes a complex. 

We define a morphism G : & ~ ~' of ~ into another complex ~ as 

a mapping of the underlying sets such that, for every A 6 ~ , the restriction of 

to the simplex of all faces of A is an isomorphism of ordered sets onto the 

simplex of all faces of G(A) . (About later use of the word'morphism'in these notes, 

see also the general convention at the end of n ~ 1.3) �9 

A subcomplex of ~ is by definition a complex A' whose underlying set 

is a subset of Z~ , and such that the inclusion is a morphism (this means that the 

order relation of A ~ is induced by that of ~ , and that if A e &' , all faces of 

A in A belong to A ~ ) . 

If A r f~ , the set of all elements of A which contain A , together 

with the order relation induced by that of Z~ , is a complex, called the star of A 



(in A ) and denoted by St A .(Notice the slight deviation from the terminology 

commonly used in topology, where St A is often called the link of A in & .) If 

B �9 St A , the rank of B in St A is called the codimension of A in B , and 

denoted by codim B A . 

If two elements A, B �9 A have an upper bound, they are called incident 

(another deviation from the standard terminology!); in that case, they have a least 

upper bound, denoted by A U B . 

A sequence AO, A I, ..., A m of elements of a complex is called a chain 

if, for every i = O, i, ..., m-l , one of the two relations A i cAi+ 1 or Ai+ 1 cA i 

holds. 

If & and A' are two complexes, the direct product of their underlying 

sets, ordered by 

(A,A') C (B,B ') iff A C A' and B C B' , 

is a complex A * A' , called the loin of the two complexes. 

1.2. Let V be a set endowed with a reflexive and symmetric relation, 

called the incidence. The subsets of V whose points are pairwise incident, ordered 

by inclusion, form a complex F(V) whose vertices are the sets reduced to one point. 

A complex is called a flag complex if it is isomorphic to such an F(V) . 

Let ~ , A' be two complexes and let V , V' be their sets of vertices. 

A morphism A~A ~ is completely characterized by its restriction to V . A necessary 

condition for a mapping V ~V' to be the restriction of a morphism A~' is that 

it maps pairs of distinct incident vertices onto pairs of distinct incident vertices; 

if ~' is a flag complex, this condition is also sufficient. 



1.2.1. PROPOSITION. A complex ~ is a fla~ complex if and only if every 

set of palrwlse incident elements of A has an upper bound. If ~ has finite rank, 

it is a fla~ complex if and only if every triplet of pairwise incident elements has 

an upper bound. 

The proof is immediate. 

1.3. A complex A is called a chamber complex if every element is 

contained in a maximal element and if, given two maximal elements C, C', there exists 

a finite sequence 

(i) C = C O , C I , ..., C m = C' 

such that 

(2) codlmCi_l(Ci_ 1N C i) = codimci(Ci. 10 C i) C 1 

for all i = i, ..., m . The maximal elements of A are then called chambers. From 

now on, the letter & will always denote a chamber complex. The set of all chambers 

contained in a subset L of a chamber complex is denoted by Cham~ L , or simply by 

Cham L when no confusion can arise. 

An element A e A has the same codimension in all chambers containing it. 

Indeed, let C, C' e Cham& be such that A C C N C' let (Ci) be as 
' i=O, ..., m 

above, and let B = C O O C 1N ... O C m O A . Then, it follows immediately from (2), 

by induction on i , that codimc. B = codim C B j so that codim C B = codimc. B , 
l 

~nd, in view of the fact that codim A B < ~ , we can write 

codim C A = codim C B - codim A B = 

= codimc, B - codlin A B = codlin c, A 



The common value of all codlin C A , for C c Chain ~ and C DA is called the 

codimenslon of A (in & ) and denoted by codim A . 

If C, C' c Chain & , all elements of a sequence (1) satisfying (2) are 

chambers, as is immediately deduced from (2), by induction on i and using what we 

have just said of the codimension. Such a sequence is called a gallery of len6th m 

and extremities C, C' (or joining C and C' ). For A, A' c & , the gallery (1) 

is said to be stretched from A to A' (or between A and A' ) if A C C , 

A' C C' and if there is no gallery of strictly smaller length with the same properties; 

the length m is then called the distance of A and A' , and denoted by dist AA' 

The gallery (I) is called minimal if it is stretched between its extremities, that is 

if m = dist CC' . By definition, a gallery (i) stammers if there is an 

i c [0, I, ..., m-l] such that Ci+ I = C i ; in particular, a minimal gallery cannot 

stammer. The diameter of & ~ denoted by diem A , is defined as the 

sup (dist CC' I C, C' ~ Chain A} . The fundamental property of chamber complexes, that 

any two chambers can be joined by a gallery, will be referred to as the connectedness 

property. 

Two chambers C, C ~ are called adjacent if dist CC' = i , that is, if 

codim (C N C') = i . Thus a finite sequence of chambers is a gallery if and only 

if any two consecutive elements of the sequence are identical or adjacent. 

A chamber complex is called thick (resp. thin) if every element of co- 

dimension 1 is contained in at least three (resp. exactly two) chambers. 

A morphism of a chamber complex into another is called a morphism of chamber 

complexes if it maps the chambers onto chambers. Such a morphism obviously maps the 

galleries onto galleries, and diminishes the distance of chambers. In these notes, 

we shall deal almost exclusively with chamber complexes. Except when otherwise 

specified, all mor~hisms which we shall consider will be mor!~hisms of chamber complexes. 



I.~. Let G be a group, let I be a set, for every i 6 I let G i be 

a subgroup of G , and for every subset ~ C I set 

Gi = '!i 
G i 

In the set F = -_L/__ ~/G i , we introduce the following order relation: for 
iCI = 

A e ~i and B e ~/Gi , we set A C B iff ! Di and if A , viewed as a subset 

of G (a coset of G i ) , contains the subset B in the set-theoretical sense; if all 

G. are different, this simply means that we provide P with the order relation which 
I 

is the opposite of the set-theoretical inclusion. Together with this relation, F is 

a complex which will be denoted by C(G;(Gi)i C I ) ' and on which G operates by left 

translations. The star of the element __ % (i C I) in C(G;(Gi)) clearly is the 

complex C(%;(Gi) i C l ) ; in particular, if F is a chamber complex, the number of 

chambers containing Gj is the index [G~ : G~/] , and the complex is thin iff 

[G{i } : G%/] = 2 for all i e I . 

It is an easy exercise to show that, for three subgroups X, Y, Z of a 

group, the following three properties are equivalent 

(1) (x.Y) n ( x . z )  = x . (Y  n z) ; 

(2) (x n ~ ) . ( x  n z)  = x n (Y.z)  ; 

(3) If three cosets xX, yY, zZ have pairwise a non-empty 

intersection, then xX A yY D zZ/%/. 

1.4.1. PROPOSITION. Le__~t I, G, (Gi) i C I be as above. Then, if I is 

finite, the complex C(G;(Gi)) is a flag complex iff any three subgroups G i , O~ , 

G k (! , .J , _k subsets of I ) possess the equivalent properties (i), (2) and (3). 

In any case, C(G;(Gi) ) is a chamber complex iff the subgroups G{i ) (i e I) 5enerate 

G 



The first assert~ion follows from 1.2.1. The second is immediate. 

1.5. In a chamber complex A , a set L of chambers is called convex 

if every minimal gallery whose extremities belong to L has all its terms in L . 

A chamber subcomplex Zk' of ~ (i. e. a subcomplex which is a chamber complex and 

such that the inclusion is a chamber morphism) is called convex if Chain A is 

convex. It is readily seen that if a chamber subcomplex is an intersection of convex 

chamber subcomplexes, it is itself convex. An arbitrary subcomplex of ~ is called 

convex if it is an intersection of convex chamber subcomplexes. 

The full convex hull of a subset L of A is defined as the smallest 

convex subcomplex Z~' containing L . The set Cham A' is then called the convex 

hull of L . It is easily seen that the convex hull of a set of chambers is the 

smallest convex set of chambers containing it. 

1.6. PROPOSITION. Let Z~ , •' be two chamber complexes such that every 

element of codimension 1 is contained in at most two chambers~ le__~t $ and ~ b_~e 

two (chamber) morphisms of A into A' , and let A, B e Chain A . Assume that 

is in~ective and that ~ and ~ coincide on the set of all faces of A . 
~I Cham~ 

I__f ~ and ~ do not coincide on the set of all faces of B , then dist (q~(A) , 

r < dist AB , and ~ I Chain ~ i.s. n~ inoective. Assume further that ~ is thin. 

Then, ~' is also thin, ~ is sur~ective and $ I Chain Z~ is distance preservin6. 

Suppose that ~ and ~ do not coincide on all faces of B , let 

G = (A = AO, AI, ..., A m = B) be a minimal gallery, and let i be the smallest 

integer such that $ and ~ do not coincide on all faces of A i . Then, 

~(Ai) O ~(Ai_ I 0 A i) = ~(Ai_ I 0 A i) . Therefore, ~(Ai) = ~(Ai_l) or ~(Ai) . But 

the second possibility would clearly imply that ~ and ~ coincide on all faces of 

A i (because they already coincide on all faces of Ai_ 1 N A i ). Therefore, 



~(Ai) = ~(Ai_l) = ~(Ai_l) , a n d  the gallery ~(G) 

part of the proposition. 

stammers, which proves the first 

We now assume that A is thin and first show that 

(i) If C' D' ~(C) with , c Chain A' are adjacent, and if C' = 

C c Chain A , then (p-l(D ') = [D) , where D is a chamber 

adjacent to C . 

Indeed, let E be the face of codimension i of C such that ~(E) = 

= C' A D' ~ and let D be the chamber containing E and different from C �9 Then 

~(D) contains C' N D' and is different from C' , because of the injectivity 

of ~ , so that ~(D) = D' . 

From (I) and the connectedness of &' follows in~nediately that 

~(ChamA) = ChamA' ; the surjectivity of ~ ensues. 

Two chambers C, D ~ ChamA are adjacent if and only if ~(C) and 

$(D) are adjacent. The "only if" is clear; the "if" is consequence of (i). Now, 

the fact that @ preserves the distance of chambers and the thinness of A follows 

readily. 

1.7. COROLLARY. If an endomorphism of a thin chamber complex is 

in~eetive on the set of chambers and leaves invariant all faces of a 6iven chamber, 

it is the identity. 

1 . 8 ,  An endomorphism (p : a -~ A of a thin chamber complex is called 

a foldin~ if it is idempotent and if every chamber C belonging to $(~ is the 

image of exactly two chambers of a by ~ . One of these two chambers is necessarily 



C itself; we denote the other by ~(C) . If C is a chamber not belonging to e(20 , 

we set ~(C) = C 

1.9. IZMMA. Let ~ : ~ ~ & be a foldins. Then , the imases by ~ of 

two adjacent chambers are identical or adjacent. 

Let C , D be the two chambers. We may assume that at least one of them, 

say C , belongs to ~(~) . Let A be the face of ~(C) whose image by ~ is 

C N D , and let D' be the chamber which contains A and is different from ~(C) �9 

Then, ~(D') contains C A D , so that it coincides with C or D . If D' ~ ~(~ , 

we must have $(D') = D because D' 2# ~(C) , so that D' = ~(D) . If D' e ~(~) , 

then also A 6 @(A) so that A = ~(A) = C N O , and ~(C) = D = ~(O) . 

I.i0. PROPOSITION. Let ~ : A ~ & be a foldin 6. 

(i) 

them belong s to ~(&) 

then ~(C') = C . 

There exists a pair of adjacent ehm~__ers such that one of 

and the other not; if [C,C'] is such a pair, with C e ~(2~ , 

are convex. 

(ii) Both the set ~ (ChamA) and its complement in Cham A 

(iii) If C , C' are as in (i) and if D is any chamber, 

dist C~ - dist CD = i or -1 a.ccordin~ as D belongs t O ~(A) or not. 

(iv) If C , C' are as in (i), then ~ is the only folding 

which maps C' onto C . 



We first show that 

(i) If C , C' are two adjacent chambers and if C e $(~ and 

C' ~ $(A) , then $(C') = C and ~(C) = C' 

Indeed, since C N C' e $(&) , it is invariant by ~ so that $(C') contains 

C N C' and must coincide with C . 

Let now G be any minimal gallery having elements both in $(~ and 

in its complement. Such a gallery clearly possesses two consecutive elements C , C' 

such that one of them, say C , belongs to ~(A) while the other does not. This 

already proves (i). From (I), it follows that $(C') = C and ~(C) = C' , so that 

the galleries ~(G) and ~(G) stammer (~(G) is a gallery in view of lemma 1.9); 

consequently, the extremities of G cannot both belong to ~(2~ (resp. to C~(2~ ) 

otherwise the stammering gallery ~(G) (resp. ~(G) ) would have the same extremities 

as G , which is impossible. This establishes (ii). 

Let C , C' , D be as in (iii) and assume first that D e $(2~ �9 Take 

for G a minimal gallery joining D and C' . Then, the stammering gallery $(G) 

joins D and C , and one has 

dist DC ~ dist DC' - i 

But the opposite inequality also holds, obviously, so that we have equality. If 

D ~/~(Z~) , one proves in a similar way, taking now for G a gallery joining D 

and C and using ~(G) instead of $(G) , that dist DC ~ = dist DC - i . 

There remains to prove (iv). Let $ be any folding such that ~(C') = C 

and let us denote by ~(Z~) the smallest subcomplex of & containing the set 

~(Cham &) ; this set being convex, by (ii), ~(&) is a chsmber complex. From (iii) 

it follows that ~(Cham &) = ~(Cham 2~) and that ~(Cham Z~) = ~(Cham 2~ �9 Applying 



i0 

the proposition 1.6 to the restrictions of .'p and ~ to ~(&) 

we see that ~ i M(s = 9 I~(A ) . Similarly go I~(A ) = ~ I ~(A) 

~=~ �9 

and the chamber 

�9 Consequently, 

C 

I.Ii. COROLLARY. L.et ~ : & ~Z~ be a foldin 6 and let C , C' be two 

adjacent chambers such that q0(C') = C . Assume that there exists a foldin6 $' such 

that $' (C) = C' . Then s U ~' (Z~) = & , the intersection ~(2r N ~' (~) does not 

contain any chamber, and M ' is the onl~ foldin6 having these two properties. The 

magpings M' and ~ coincide on Chain & . There exists an involutory automorphism 

: ~ -~ Z~ which coincides with M o_nn M' (Z~) and with M' o__nn ~(2~ �9 

The relations M(A)U~'(&)=~ and Chain (M(A) N~'(A))=~ are 

immediate consequences of i. I0 (iii). If M" is any folding satisfying these two 

relations~ one has C ~ e M"(Z~] , C ~q0"(A) �9 thus M"(C) = C' by i.i0 (it ~ and 

g0" = ~' by i. I0 (iv). 

If an element of A belongs to ~(A) N ~'(2~ , it is invariant by both 

and $' ; from the relation $(A) U M' (A) = A, it then follows that the morphisms 

(0 j I $(A) and r I ~' (Z~) can be glued into an endomorphism o : A -~ A This 

endomorphism is injective on Chmm n , and its square leaves invariant each face of 

2 
C , therefore (1.7) p is the identity and p is an automorphism. Finally, if 

D e Chem <p(A) , one has M(M'(D)) =p(D(D)) = D , so that ~ (D) = M(D) , and the 

same is clearly true for D ~ Cham ~' (~) 

1,12. When it exists, the folding ~' of corollary 1.11 will be called 

opposite to M and denoted by ~ (which is consistent with the notation introduced 

in 1.8). The automorphism p is then called the reflection associated with ~ . Let 

B e & have codimension i j if there is a reflection 0 leaving B invariant~ this 

reflection is unique (because if B = C O C ' , with C , C' e Chain Z~ �9 one has 
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p(c) c' = , and p must be the reflection associated with a folding mapping C 

onto C' ), and is called the reflection with resyect to B . 

The image M(A) of a folding is called a root, or the root associated 

with ~ . The wall of a root r , denoted by aS , is by definition the subcomplex 

of A consisting of all A c A such that there exist adjacent chambers C c 

and C' / ~ with A C C O C' . Two roots ~ , ~ are called opposite if they are 

associated with opposite foldings; by i.ii, this means that r U r = A and 

r n r n Chain  A = , 9  z . 

1.13. LEMMA. Let C , C' be two adjacent chambers of the thin 

complex ~ , se___~t A = C O C' and let F be the set of all galleries G which 

are stretched between A and a chamber of ~ . Let M an__dd ~' be two endomor~hisms 

of ~ leavin G all faces of A invariant and such that M(C) = ~(C') = C and 

M'(C') = M'(C) = C' . Then, if ~ and ~' map F in itself, they are opposite 

foldin6s. 

Let G = (Co, CI, ..., C m) e F 

induction on m = dist AD that 

and set C = D . We first show by 
m 

(i) If C O = C (resp. C' ) , all faces of D are invariant by M and 

~ ~' (resp. by (p' and ~' o q ); 

(2) If C O = C (resp. C') , then ~(D)2~D (resp. qo(D) 2#D ) �9 

For m = 0 , both statements are obvious. Let m be > 0 . Without loss 

of generality, we may assume that C O = C . Set ~ = M or ~ o $' . By the induction 

hypothesis, ~ leaves invariant all faces of Cm_ l . The chamber $(D) contains 

~(Cm_ l O D) = Cm_ I N D , so that $(D) = Cm_ I or D , but the first possibility is 

excluded by the assumption made on q and (p' . Therefore, $(D) = D . Since 
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also leaves invariant all faces of Cm_ I O D , it leaves invariant all faces of D , 

and (i) is proved. Now suppose that M' (D) = D . Applying (I) to the gallery ~' (G) , 

for which it is already proved, we see that M'(Cm_ 1N D) = Cm_ 10 D ~ from which 

follows that M'(Cm_I ) = Cm_ 1 ~ which contradicts the induction hypothesis. Therefore, 

~' (D) /D . 

Let now D be any chamber of ~ , and let G be an element of F 

whose last term is D . Applying (i) to ~(G) , we see that $ leaves invariant 

all faces of ~(D) , so that M2(B) = $(B) for all B C D , and the morphism 

is idempotent. 

From (i) and (2), it follows that for every chamber E , either 

M(E) = M(@'(E)) = E ~M'(E) or ~'(E) = M'(~(E)) = E/M(E) �9 Now, let D e Chain M(2~ , 

and let E e M-I(D) �9 Then, either E = ~(E) = D , or E = ~'(<p(E)) = ~'(D) . In other 

words, ~-I(D) = {D, M~(D)} . Since M'(D) 2#D ~ this shows that ~ is a folding. 

The same holds for M' , and the lemma is proved. 


